home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 16
/
CU Amiga Magazine's Super CD-ROM 16 (1997-10-16)(EMAP Images)(GB)[!][issue 1997-11].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
zfdctc.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-01-15
|
10KB
|
365 lines
/* Copyright (C) 1994 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* zfdctc.c */
/* Common code for DCT filter creation */
#include "memory_.h"
#include "stdio_.h" /* for jpeglib.h */
#include "jpeglib.h"
#include "ghost.h"
#include "errors.h"
#include "opcheck.h"
#include "idict.h"
#include "idparam.h"
#include "imemory.h" /* for iutil.h */
#include "ipacked.h"
#include "iutil.h"
#include "strimpl.h"
#include "sdct.h"
#include "sjpeg.h"
/* Forward references */
private int quant_params(P4(const ref *, int, UINT16 *, floatp));
int zfdct_byte_params(P4(const ref *, int, int, UINT8 *));
/* Common setup for encoding and decoding filters. */
int
zfdct_setup_quantization_tables(const ref *op, stream_DCT_state *pdct,
bool is_encode)
{ int code;
int i, j;
ref *pdval;
const ref *pa;
const ref *QuantArrays[NUM_QUANT_TBLS]; /* for detecting duplicates */
int num_in_tables;
int num_out_tables;
jpeg_component_info * comp_info;
JQUANT_TBL ** table_ptrs;
JQUANT_TBL * this_table;
if ( op == 0 || dict_find_string(op, "QuantTables", &pdval) <= 0 )
return 0;
if ( !r_has_type(pdval, t_array) )
return_error(e_typecheck);
if ( is_encode )
{ num_in_tables = pdct->data.compress->cinfo.num_components;
if ( r_size(pdval) < num_in_tables )
return_error(e_rangecheck);
comp_info = pdct->data.compress->cinfo.comp_info;
table_ptrs = pdct->data.compress->cinfo.quant_tbl_ptrs;
}
else
{ num_in_tables = r_size(pdval);
comp_info = NULL; /* do not set for decompress case */
table_ptrs = pdct->data.decompress->dinfo.quant_tbl_ptrs;
}
num_out_tables = 0;
for ( i = 0, pa = pdval->value.const_refs;
i < num_in_tables; i++, pa++
)
{ for ( j = 0; j < num_out_tables; j++ )
{ if ( obj_eq(pa, QuantArrays[j]) )
break;
}
if ( comp_info != NULL )
comp_info[i].quant_tbl_no = j;
if ( j < num_out_tables )
continue;
if ( ++num_out_tables > NUM_QUANT_TBLS )
return_error(e_rangecheck);
QuantArrays[j] = pa;
this_table = table_ptrs[j];
if ( this_table == NULL )
{ this_table = gs_jpeg_alloc_quant_table(pdct);
if ( this_table == NULL )
return_error(e_VMerror);
table_ptrs[j] = this_table;
}
if ( r_size(pa) != DCTSIZE2 )
return_error(e_rangecheck);
code = quant_params(pa, DCTSIZE2,
this_table->quantval, pdct->QFactor);
if ( code < 0 )
return code;
}
return 0;
}
int
zfdct_setup_huffman_tables(const ref *op, stream_DCT_state *pdct,
bool is_encode)
{ int code;
int i, j;
ref *pdval;
const ref *pa;
const ref *DCArrays[NUM_HUFF_TBLS]; /* for detecting duplicates */
const ref *ACArrays[NUM_HUFF_TBLS];
int num_in_tables;
int ndc, nac;
int codes_size;
jpeg_component_info * comp_info;
JHUFF_TBL ** dc_table_ptrs;
JHUFF_TBL ** ac_table_ptrs;
JHUFF_TBL ** this_table_ptr;
JHUFF_TBL * this_table;
int max_tables = 2; /* baseline limit */
if ( op == 0 ) /* no dictionary */
return 0;
if ( (code = dict_find_string(op, "HuffTables", &pdval)) <= 0)
return 0;
if ( !r_has_type(pdval, t_array) )
return_error(e_typecheck);
if ( is_encode )
{ num_in_tables = pdct->data.compress->cinfo.input_components * 2;
if ( r_size(pdval) < num_in_tables )
return_error(e_rangecheck);
comp_info = pdct->data.compress->cinfo.comp_info;
dc_table_ptrs = pdct->data.compress->cinfo.dc_huff_tbl_ptrs;
ac_table_ptrs = pdct->data.compress->cinfo.ac_huff_tbl_ptrs;
if ( pdct->data.common->Relax )
max_tables = max(pdct->data.compress->cinfo.input_components, 2);
}
else
{ num_in_tables = r_size(pdval);
comp_info = NULL; /* do not set for decompress case */
dc_table_ptrs = pdct->data.decompress->dinfo.dc_huff_tbl_ptrs;
ac_table_ptrs = pdct->data.decompress->dinfo.ac_huff_tbl_ptrs;
if ( pdct->data.common->Relax )
max_tables = NUM_HUFF_TBLS;
}
ndc = nac = 0;
for ( i = 0, pa = pdval->value.const_refs;
i < num_in_tables; i++, pa++
)
{ if ( i & 1 )
{ for ( j = 0; j < nac; j++ )
{ if ( obj_eq(pa, ACArrays[j]) )
break;
}
if ( comp_info != NULL )
comp_info[i>>1].ac_tbl_no = j;
if ( j < nac )
continue;
if ( ++nac > NUM_HUFF_TBLS )
return_error(e_rangecheck);
ACArrays[j] = pa;
this_table_ptr = ac_table_ptrs + j;
}
else
{ for ( j = 0; j < ndc; j++ )
{ if ( obj_eq(pa, DCArrays[j]) )
break;
}
if ( comp_info != NULL )
comp_info[i>>1].dc_tbl_no = j;
if ( j < ndc )
continue;
if ( ++ndc > NUM_HUFF_TBLS )
return_error(e_rangecheck);
DCArrays[j] = pa;
this_table_ptr = dc_table_ptrs + j;
}
this_table = *this_table_ptr;
if ( this_table == NULL )
{ this_table = gs_jpeg_alloc_huff_table(pdct);
if ( this_table == NULL )
return_error(e_VMerror);
*this_table_ptr = this_table;
}
if ( r_size(pa) < 16 )
return_error(e_rangecheck);
code = zfdct_byte_params(pa, 0, 16, this_table->bits + 1);
if ( code < 0 )
return code;
for ( codes_size = 0, j = 1; j <= 16; j++ )
codes_size += this_table->bits[j];
if ( codes_size > 256 || r_size(pa) != codes_size+16 )
return_error(e_rangecheck);
code = zfdct_byte_params(pa, 16, codes_size, this_table->huffval);
if ( code < 0 )
return code;
}
if ( nac > max_tables || ndc > max_tables )
return_error(e_rangecheck);
return 0;
}
/* The main procedure */
int
zfdct_setup(const ref *op, stream_DCT_state *pdct)
{ const ref *dop;
int npop;
int code;
/* Initialize the state in case we bail out. */
pdct->Markers.data = 0;
pdct->Markers.size = 0;
if ( !r_has_type(op, t_dictionary) )
{ npop = 0;
dop = 0;
}
else
{ check_dict_read(*op);
npop = 1;
dop = op;
}
/* These parameters are common to both, and are all defaultable. */
if ( (code = dict_int_param(dop, "Picky", 0, 1, 0,
&pdct->data.common->Picky)) < 0 ||
(code = dict_int_param(dop, "Relax", 0, 1, 0,
&pdct->data.common->Relax)) < 0 ||
(code = dict_int_param(dop, "ColorTransform", -1, 2, -1,
&pdct->ColorTransform)) < 0 ||
(code = dict_float_param(dop, "QFactor", 1.0,
&pdct->QFactor)) < 0
)
return code;
if ( pdct->QFactor < 0.0 || pdct->QFactor > 1000000.0 )
return_error(e_rangecheck);
return npop;
}
/* ------ Internal routines ------ */
/* Get N quantization values from an array or a string. */
private int
quant_params(const ref *op, int count, UINT16 *pvals, floatp QFactor)
{ int i;
const ref_packed *pref;
double val;
/* Adobe specifies the values to be supplied in zigzag order.
* For IJG versions newer than v6, we need to convert this order
* to natural array order. Older IJG versions want zigzag order.
*/
#if JPEG_LIB_VERSION >= 61
/* natural array position of n'th element of JPEG zigzag order */
static const int natural_order[DCTSIZE2] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
#define jpeg_order(x) natural_order[x]
#else
#define jpeg_order(x) (x)
#endif
switch ( r_type(op) )
{
case t_string:
check_read(*op);
for ( i = 0; i < count; i++ )
{
val = op->value.const_bytes[i] * QFactor;
if ( val < 1 ) val = 1;
if ( val > 255 ) val = 255;
pvals[jpeg_order(i)] = (UINT16) (val + 0.5);
}
return 0;
case t_array:
check_read(*op);
pref = (const ref_packed *)op->value.const_refs;
break;
case t_shortarray:
case t_mixedarray:
check_read(*op);
pref = op->value.packed;
break;
default:
return_error(e_typecheck);
}
for ( i = 0; i < count; pref = packed_next(pref), i++ )
{ ref nref;
packed_get(pref, &nref);
switch ( r_type(&nref) )
{
case t_integer:
val = nref.value.intval * QFactor;
break;
case t_real:
val = nref.value.realval * QFactor;
break;
default:
return_error(e_typecheck);
}
if ( val < 1 ) val = 1;
if ( val > 255 ) val = 255;
pvals[jpeg_order(i)] = (UINT16) (val + 0.5);
}
return 0;
#undef jpeg_order
}
/* Get N byte-size values from an array or a string.
* Used for HuffTables, HSamples, VSamples.
*/
int
zfdct_byte_params(const ref *op, int start, int count, UINT8 *pvals)
{ int i;
const ref_packed *pref;
UINT8 *pval;
switch ( r_type(op) )
{
case t_string:
check_read(*op);
for ( i = 0, pval = pvals; i < count; i++, pval++ )
*pval = (UINT8)op->value.const_bytes[start+i];
return 0;
case t_array:
check_read(*op);
pref = (const ref_packed *)(op->value.const_refs + start);
break;
case t_shortarray:
case t_mixedarray:
check_read(*op);
pref = op->value.packed;
for ( i = 0; i < start; i++ )
pref = packed_next(pref);
break;
default:
return_error(e_typecheck);
}
for ( i = 0, pval = pvals; i < count;
pref = packed_next(pref), i++, pval++
)
{ ref nref;
packed_get(pref, &nref);
switch ( r_type(&nref) )
{
case t_integer:
if ( nref.value.intval < 0 || nref.value.intval > 255 )
return_error(e_rangecheck);
*pval = (UINT8)nref.value.intval;
break;
case t_real:
if ( nref.value.realval < 0 || nref.value.realval > 255 )
return_error(e_rangecheck);
*pval = (UINT8)(nref.value.realval + 0.5);
break;
default:
return_error(e_typecheck);
}
}
return 0;
}